CHK2-BRCA1 tumor-suppressor axis restrains oncogenic Aurora-A kinase to ensure proper mitotic microtubule assembly.
نویسندگان
چکیده
BRCA1 (breast cancer type 1 susceptibility protein) is a multifunctional tumor suppressor involved in DNA damage response, DNA repair, chromatin regulation, and mitotic chromosome segregation. Although the nuclear functions of BRCA1 have been investigated in detail, its role during mitosis is little understood. It is clear, however, that loss of BRCA1 in human cancer cells leads to chromosomal instability (CIN), which is defined as a perpetual gain or loss of whole chromosomes during mitosis. Moreover, our recent work has revealed that the mitotic function of BRCA1 depends on its phosphorylation by the tumor-suppressor kinase Chk2 (checkpoint kinase 2) and that this regulation is required to ensure normal microtubule plus end assembly rates within mitotic spindles. Intriguingly, loss of the positive regulation of BRCA1 leads to increased oncogenic Aurora-A activity, which acts as a mediator for abnormal mitotic microtubule assembly resulting in chromosome missegregation and CIN. However, how the CHK2-BRCA1 tumor suppressor axis restrains oncogenic Aurora-A during mitosis to ensure karyotype stability remained an open question. Here we uncover a dual molecular mechanism by which the CHK2-BRCA1 axis restrains oncogenic Aurora-A activity during mitosis and identify BRCA1 itself as a target for Aurora-A relevant for CIN. In fact, Chk2-mediated phosphorylation of BRCA1 is required to recruit the PP6C-SAPS3 phosphatase, which acts as a T-loop phosphatase inhibiting Aurora-A bound to BRCA1. Consequently, loss of CHK2 or PP6C-SAPS3 promotes Aurora-A activity associated with BRCA1 in mitosis. Aurora-A, in turn, then phosphorylates BRCA1 itself, thereby inhibiting the mitotic function of BRCA1 and promoting mitotic microtubule assembly, chromosome missegregation, and CIN.
منابع مشابه
Loss of the tumour-suppressor genes CHK2 and BRCA1 results in chromosomal instability.
CHK2 (checkpoint kinase 2) and BRCA1 (breast cancer early-onset 1) are tumour-suppressor genes that have been implicated previously in the DNA damage response. Recently, we have identified CHK2 and BRCA1 as genes required for the maintenance of chromosomal stability and have shown that a Chk2-mediated phosphorylation of Brca1 is required for the proper and timely assembly of mitotic spindles. L...
متن کاملTumor suppressor CHK2: regulator of DNA damage response and mediator of chromosomal stability.
CHK2 is a multiorgan tumor susceptibility gene that encodes for a serine/threonine protein kinase involved in the response to cellular DNA damage. After ATM-mediated phosphorylation, the activated Chk2 kinase can act as a signal transducer and phosphorylate a variety of substrates, including the Cdc25 phosphatases, p53, PML, E2F-1, and Brca1, which has been associated with halting the cell cycl...
متن کاملDNA-PKcs activates the Chk2–Brca1 pathway during mitosis to ensure chromosomal stability
The catalytic subunit of DNA-dependent protein kinase (DNA-PKcs) is known to have a critical role in DNA double-strand break repair. We have previously reported that DNA-PKcs is activated when cells enter mitosis and functions in mitotic spindle assembly and chromosome segregation. Here we report that DNA-PKcs is the upstream regulator of the Chk2-Brca1 pathway, which impacts microtubule dynami...
متن کاملFunctional Significance of Aurora Kinases–p53 Protein Family Interactions in Cancer
Aurora kinases play critical roles in regulating spindle assembly, chromosome segregation, and cytokinesis to ensure faithful segregation of chromosomes during mitotic cell division cycle. Molecular and cell biological studies have revealed that Aurora kinases, at physiological levels, orchestrate complex sequential cellular processes at distinct subcellular locations through functional interac...
متن کاملThe tumor suppressor CHK2: regulator of DNA damage response and mediator of chromosomal stability
Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited. Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited. Abstract CHK2 represents a multi-organ tumor susceptibility gene that encodes for a serine/threonine protein kinase, which is involved in the response to cellular DNA damage. After ATM mediated...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 113 7 شماره
صفحات -
تاریخ انتشار 2016